

⚡ 📇 token2index: A lightweight but powerful library for token indexing

[image: Build]
 [https://travis-ci.org/github/Kaleidophon/token2index/builds][image: Documentation Status]
 [https://token2index.readthedocs.io/en/latest/?badge=latest][image: Coverage Status]
 [https://coveralls.io/github/Kaleidophon/token2index?branch=master][image: License: GPL v3]
 [https://www.gnu.org/licenses/gpl-3.0][image: Code style: black]
 [https://github.com/python/black]token2index is a small yet powerful library facilitating the fast and easy creation of a data structure mapping
tokens to indices, primarily aimed at applications for Natural Language Processing. The library is fully tested, and
does not require any additional requirements. The documentation can be found here [https://token2index.readthedocs.io/en/latest/], some feature highlights are
shown below.

Who / what is this for?

This class is written to be used for NLP applications where we want to assign an index to every word in a sequence e.g. to be later used to look up corresponding
word embeddings. Building an index and indexing batches of sequences for Deep Learning models using frameworks like PyTorch or Tensorflow are common steps but are often written from
scratch every time. This package provides a ready-made package combining many useful features, like reading vocabulary files, building indices from a corpus or indexing entire batches in one single
function call, all while being fully tested.

✨ Feature Highlights

	Building and extending vocab

One way to build the index from a corpus is using the build() function:

 >>> from t2i import T2I
 >>> t2i = T2I.build(["colorless green ideas dream furiously", "the horse raced past the barn fell"])
 >>> t2i
 T2I(Size: 13, unk_token: <unk>, eos_token: <eos>, pad_token: <pad>, {'colorless': 0, 'green': 1, 'ideas': 2, 'dream': 3, 'furiously': 4, 'the': 5, 'horse': 6, 'raced': 7, 'past': 8, 'parn': 9, 'fell': 10, '<unk>': 11, '<eos>': 12, '<pad>': 13})

The index can always be extended again later using ``extend()``\ :

>>> t2i = t2i.extend("completely new words")
T2I(Size: 16, unk_token: <unk>, eos_token: <eos>, pad_token: <pad>, {'colorless': 0, 'green': 1, 'ideas': 2, 'dream': 3, 'furiously': 4, 'the': 5, 'horse': 6, 'raced': 7, 'past': 8, 'barn': 9, 'fell': 10, 'completely': 13, 'new': 14, 'words': 15, '<unk>': 16, '<eos>': 17, '<pad>': 18})

	Easy indexing (of batches)

Index multiple sentences at once in a single function call!

 >>> t2i.index(["the green horse raced <eos>", "ideas are a dream <eos>"])
 [[5, 1, 6, 7, 12], [2, 11, 11, 3, 12]]

where unknown tokens are always mapped to ``unk_token``.

	Easy conversion back to strings

Reverting indices back to strings is equally as easy:

>>> t2i.unindex([5, 14, 16, 3, 6])
'the new <unk> dream horse'

	Automatic padding

You are indexing multiple sentences of different length and want to add padding? No problem! index() has two
options available via the pad_to argument. The first is padding to the maximum length of all the sentences:

 >>> padded_sents = t2i.index(["the green horse raced <eos>", "ideas <eos>"], pad_to="max")
 >>> padded_sents
 [[5, 1, 6, 7, 12], [2, 12, 13, 13, 13]]
 >>> t2i.unindex(padded_sents)
 [['the green horse raced <eos>', 'ideas <eos> <pad> <pad> <pad>']]

Alternatively, you can also pad to a pre-defined length:

>>> padded_sents = t2i.index(["the green horse <eos>", "past ideas <eos>"], pad_to=5)
>>> padded_sents
[[5, 1, 6, 12, 13], [8, 2, 12, 13, 13]]
>>> t2i.unindex(padded_sents)
[['the green horse <eos> <pad>', 'past ideas <eos> <pad> <pad>']]

	Vocab from file

Using T2I.from_file(), the index can be created directly by reading from an existing vocab file.
Refer to its documentation here [https://token2index.readthedocs.io/en/latest/#t2i.T2I.from_file] for more info.

	Fixed memory size

Although the defaultdict class from Python’s collections package also posses the functionality to map unknown
keys to a certain value, it grows in size for every new key. T2I memory size stays fixed after the index is built.

	Support for special tokens

To enable flexibility in modern NLP applications, T2I allows for an arbitrary number of special tokens (like a
masking or a padding token) during init!

>>> t2i = T2I(special_tokens=["<mask>"])
>>> t2i
T2I(Size: 3, unk_token: <unk>, eos_token: <eos>, {'<unk>': 0, '<eos>': 1, '<mask>': 2})

	Explicitly supported programmer laziness

Too lazy to type? The library saves you a few keystrokes here and there. instead of calling t2i.index(...) you can
directly call t2i(...) to index one or multiple sequences. Furthermore, key functions like index(), unindex(),
build() and extend() support strings or iterables of strings as arguments alike.

🔌 Compatibility with other frameworks (Numpy, PyTorch, Tensorflow)

It is also ensured that T2I is easily compatible with frameworks like Numpy, PyTorch and
Tensorflow, without needing them as requirements:

Numpy

>>> import numpy as np
>>> t = np.array(t2i.index(["the new words are ideas <eos>", "the green horse <eos> <pad> <pad>"]))
>>> t
array([[5, 15, 16, 17, 2, 18],
 [5, 1, 6, 18, 19, 19]])
>>> t2i.unindex(t)
['the new words <unk> ideas <eos>', 'the green horse <eos> <pad> <pad>']

PyTorch

>>> import torch
>>> t = torch.LongTensor(t2i.index(["the new words are ideas <eos>", "the green horse <eos> <pad> <pad>"]))
>>> t
tensor([[5, 15, 16, 17, 2, 18],
 [5, 1, 6, 18, 19, 19]])
>>> t2i.unindex(t)
['the new words <unk> ideas <eos>', 'the green horse <eos> <pad> <pad>']

Tensorflow

>>> import tensorflow as tf
>>> t = tf.convert_to_tensor(t2i.index(["the new words are ideas <eos>", "the green horse <eos> <pad> <pad>"]), dtype=tf.int32)
>>> t
tensor([[5, 15, 16, 17, 2, 18],
 [5, 1, 6, 18, 19, 19]])
>>> t2i.unindex(t)
['the new words <unk> ideas <eos>', 'the green horse <eos> <pad> <pad>']

📥 Installation

Installation can simply be done using pip:

🎓 Citing

If you use token2index for research purposes, please cite the library using the following citation info:

Documentation

Define a lightweight data structure to store and look up the indices belonging to arbitrary tokens.
Originally based on the diagnnose [https://github.com/i-machine-think/diagnnose] W2I class.

	
class t2i.T2I(index: Union[Dict[str, int], t2i.Index, None] = None, counter: Optional[collections.Counter] = None, max_size: Optional[int] = None, min_freq: int = 1, unk_token: str = '<unk>', eos_token: str = '<eos>', pad_token: str = '<pad>', special_tokens: Iterable[str] = ())

	Provides vocab functionality mapping tokens to indices. After building an index, sentences or a corpus of sentences
can be mapped to the tokens’ assigned indices. There are special tokens for the end of a sentence (eos_token) and
for tokens that were not added to the index during the build phase (unk_token).

	
static build(corpus: Union[str, Iterable[str], Iterable[Iterable[str]]], delimiter: str = ' ', counter: Optional[collections.Counter] = None, max_size: Optional[int] = None, min_freq: int = 1, unk_token: str = '<unk>', eos_token: str = '<eos>', pad_token: str = '<pad>', special_tokens: Iterable[str] = ())

	Build token index from scratch on a corpus.

	corpus: Corpus

	Corpus that is being used to build the index.

	delimiter: str

	Delimiter between tokens. Default is a whitespace ‘ ‘.

	counter: Optional[Counter]

	Counter with token frequencies in corpus. Default is None.

	max_size: Optional[int]

	Maximum size of T2I index. Default is None, which means no maximum size.

	min_freq: int

	Minimum frequency of a token for it to be included in the index. Default is 1.

	unk_token: str

	Token that should be used for unknown words. Default is ‘STD_UNK’.

	eos_token: str

	Token that marks the end of a sequence. Default is ‘<eos>’.

	pad_token: str

	Padding token. Default is ‘<pad>’.

	special_tokens: Iterable[str]

	An arbitrary number of additional special tokens, given as unnamed arguments.

	t2i: T2I

	New T2I object.

	
extend(corpus: Union[str, Iterable[str], Iterable[Iterable[str]]], delimiter: str = ' ')

	Extend an existing T2I with tokens from a new tokens and build indices for them.

	corpus: Corpus

	Corpus that is being used to extend the index.

	delimiter: str

	Delimiter between tokens. Default is a whitespace ‘ ‘.

	t2i: T2I

	New T2I object.

	
static from_file(vocab_path: str, encoding: str = 'utf-8', delimiter: str = '\t', counter: Optional[collections.Counter] = None, max_size: Optional[int] = None, min_freq: int = 1, unk_token: str = '<unk>', eos_token: str = '<eos>', pad_token: str = '<pad>', special_tokens: Iterable[str] = ())

	Generate a T2I object from a file. This file can have two possible formats:

	One token per line (in which case the index is the line number)

	A token and its corresponding index, separated by some delimiter (default is ” “):

	vocab_path: str

	Path to vocabulary file.

	encoding: str

	Encoding of vocabulary file (default is ‘utf-8’).

	delimiter: str

	Delimiter in case the format is token <delimiter> index. Default is ‘ ‘.

	counter: Optional[Counter]

	Counter with token frequencies in corpus. Default is None.

	max_size: Optional[int]

	Maximum size of T2I index. Default is None, which means no maximum size.

	min_freq: int

	Minimum frequency of a token for it to be included in the index. Default is 1.

	unk_token: str

	Token that should be used for unknown words. Default is ‘STD_UNK’.

	eos_token: str

	Token that marks the end of a sequence. Default is ‘<eos>’.

	pad_token: str

	Padding token. Default is ‘<pad>’.

	special_tokens: Iterable[str]

	An arbitrary number of additional special tokens.

	t2i: T2I

	T2I object built from vocab file.

	
index(corpus: Union[str, Iterable[str], Iterable[Iterable[str]]], delimiter: str = ' ', pad_to: Union[str, int, None] = None) → [typing.Iterable[int], typing.Iterable[typing.Iterable[int]]]

	Assign indices to a sentence or a series of sentences.

	corpus: Corpus

	Corpus that is being indexed.

	delimiter: str

	Delimiter between tokens. Default is a whitespace ‘ ‘.

	pad_to: Optional[Union[str, int]]

	Indicate whether shorter sequences in this corpus should be padded up to the length of the longest sequence
(‘max’) or to a fixed length (any positive integer) or not not at all (None). Default is None.

	indexed_corpus: IndexedCorpus

	Indexed corpus.

	
indices() → Tuple[int, ...]

	Return all indices in this T2I object.

	
static load(path: str)

	Load serialized T2I object.

	
save(path: str) → None

	Save T2I object as pickle.

	
t2i

	Return the dictionary mapping tokens to unique indices.

	t2i: Index

	Dictionary mapping from tokens to indices.

	
tokens() → Tuple[str, ...]

	Return all token in this T2I object.

	
unindex(indexed_corpus: [typing.Iterable[int], typing.Iterable[typing.Iterable[int]]], joiner: Optional[str] = ' ') → Union[str, Iterable[str], Iterable[Iterable[str]]]

	Convert indices back to their original tokens. A joiner can be specified to determine how tokens are pieced
back together. If the joiner is None, the tokens are not joined and are simply returned as a list.

	indexed_corpus: IndexedCorpus

	An indexed corpus.

	joiner: Optional[str]

	String used to join tokens. Default is a whitespace ‘ ‘. If the value is None, tokens are not joined and a
list of tokens is returned.

	corpus: Corpus

	Un-indexed corpus.

	
class t2i.Index

	(Technically) A defaultdict where the value return value for an unknown key is the number of entries. However, it
doesn’t inherit from defaultdict, because functions returning the value for missing keys can only return a constant
value. In this case, after every lookup of a new token, this value for an unknown is incremented by one.

	
highest_idx

	Return the currently highest index in the index. Return -1 if the index is empty.

	
items() → Iterable[Tuple[str, int]]

	The same as a usual dict items(), except that the entries are sorted by index (this has otherwise proven to
create problems in Python < 3.6).

 Python Module Index

 t

 		 	

 		
 t	

 	
 	
 t2i	

Index

 B
 | E
 | F
 | H
 | I
 | L
 | S
 | T
 | U

B

 	
 	build() (t2i.T2I static method)

E

 	
 	extend() (t2i.T2I method)

F

 	
 	from_file() (t2i.T2I static method)

H

 	
 	highest_idx (t2i.Index attribute)

I

 	
 	Index (class in t2i)

 	index() (t2i.T2I method)

 	
 	indices() (t2i.T2I method)

 	items() (t2i.Index method)

L

 	
 	load() (t2i.T2I static method)

S

 	
 	save() (t2i.T2I method)

T

 	
 	T2I (class in t2i)

 	t2i (module)

 	(t2i.T2I attribute)

 	
 	tokens() (t2i.T2I method)

U

 	
 	unindex() (t2i.T2I method)

|:zap:| |:card_index:| token2index: A lightweight but powerful library for token indexing

[image: _images/token2index.svg]Build [https://travis-ci.org/github/Kaleidophon/token2index/builds]
[image: _images/3872cf2264f06ae64ec92800e9007b182193bc7a.svg]Documentation Status [https://token2index.readthedocs.io/en/latest/?badge=latest]
[image: _images/badge.svg]Coverage Status [https://coveralls.io/github/Kaleidophon/token2index?branch=master]
[image: _images/9a92d48ce3b6b5a8ac3fb73783e0dfb67da7786b.8-blue]Compatibility
[image: _images/License-GPLv3-blue.svg]License: GPL v3 [https://www.gnu.org/licenses/gpl-3.0]
[image: _images/code%20style-black-000000.svg]Code style: black [https://github.com/python/black]

token2index is a small yet powerful library facilitating the fast and easy creation of a data structure mapping
tokens to indices, primarily aimed at applications for Natural Language Processing. The library is fully tested, and
does not require any additional requirements. The documentation can be found here [https://token2index.readthedocs.io/en/latest/], some feature highlights are
shown below.

Who / what is this for?

This class is written to be used for NLP applications where we want to assign an index to every word in a sequence e.g. to be later used to look up corresponding
word embeddings. Building an index and indexing batches of sequences for Deep Learning models using frameworks like PyTorch or Tensorflow are common steps but are often written from
scratch every time. This package provides a ready-made package combining many useful features, like reading vocabulary files, building indices from a corpus or indexing entire batches in one single
function call, all while being fully tested.

|:sparkles:| Feature Highlights

	Building and extending vocab

One way to build the index from a corpus is using the build() function:

>>> from t2i import T2I
>>> t2i = T2I.build(["colorless green ideas dream furiously", "the horse raced past the barn fell"])
>>> t2i
T2I(Size: 13, unk_token: <unk>, eos_token: <eos>, pad_token: <pad>, {'colorless': 0, 'green': 1, 'ideas': 2, 'dream': 3, 'furiously': 4, 'the': 5, 'horse': 6, 'raced': 7, 'past': 8, 'parn': 9, 'fell': 10, '<unk>': 11, '<eos>': 12, '<pad>': 13})

The index can always be extended again later using extend():

>>> t2i = t2i.extend("completely new words")
T2I(Size: 16, unk_token: <unk>, eos_token: <eos>, pad_token: <pad>, {'colorless': 0, 'green': 1, 'ideas': 2, 'dream': 3, 'furiously': 4, 'the': 5, 'horse': 6, 'raced': 7, 'past': 8, 'barn': 9, 'fell': 10, 'completely': 13, 'new': 14, 'words': 15, '<unk>': 16, '<eos>': 17, '<pad>': 18})

	Easy indexing (of batches)

Index multiple sentences at once in a single function call!

>>> t2i.index(["the green horse raced <eos>", "ideas are a dream <eos>"])
[[5, 1, 6, 7, 12], [2, 11, 11, 3, 12]]

where unknown tokens are always mapped to unk_token.

	Easy conversion back to strings

Reverting indices back to strings is equally as easy:

>>> t2i.unindex([5, 14, 16, 3, 6])
'the new <unk> dream horse'

	Automatic padding

You are indexing multiple sentences of different length and want to add padding? No problem! index() has two
options available via the pad_to argument. The first is padding to the maximum length of all the sentences:

>>> padded_sents = t2i.index(["the green horse raced <eos>", "ideas <eos>"], pad_to="max")
>>> padded_sents
[[5, 1, 6, 7, 12], [2, 12, 13, 13, 13]]
>>> t2i.unindex(padded_sents)
[['the green horse raced <eos>', 'ideas <eos> <pad> <pad> <pad>']]

Alternatively, you can also pad to a pre-defined length:

>>> padded_sents = t2i.index(["the green horse <eos>", "past ideas <eos>"], pad_to=5)
>>> padded_sents
[[5, 1, 6, 12, 13], [8, 2, 12, 13, 13]]
>>> t2i.unindex(padded_sents)
[['the green horse <eos> <pad>', 'past ideas <eos> <pad> <pad>']]

	Vocab from file

Using T2I.from_file(), the index can be created directly by reading from an existing vocab file.
Refer to its documentation here [https://token2index.readthedocs.io/en/latest/#t2i.T2I.from_file] for more info.

	Fixed memory size

Although the defaultdict class from Python’s collections package also posses the functionality to map unknown
keys to a certain value, it grows in size for every new key. T2I memory size stays fixed after the index is built.

	Support for special tokens

To enable flexibility in modern NLP applications, T2I allows for an arbitrary number of special tokens (like a
masking or a padding token) during init!

>>> t2i = T2I(special_tokens=["<mask>"])
>>> t2i
T2I(Size: 3, unk_token: <unk>, eos_token: <eos>, {'<unk>': 0, '<eos>': 1, '<mask>': 2})

	Explicitly supported programmer laziness

Too lazy to type? The library saves you a few keystrokes here and there. instead of calling t2i.index(...) you can
directly call t2i(...) to index one or multiple sequences. Furthermore, key functions like index(), unindex(),
build() and extend() support strings or iterables of strings as arguments alike.

|:electric_plug:| Compatibility with other frameworks (Numpy, PyTorch, Tensorflow)

It is also ensured that T2I is easily compatible with frameworks like Numpy, PyTorch and
Tensorflow, without needing them as requirements:

Numpy

>>> import numpy as np
>>> t = np.array(t2i.index(["the new words are ideas <eos>", "the green horse <eos> <pad> <pad>"]))
>>> t
array([[5, 15, 16, 17, 2, 18],
 [5, 1, 6, 18, 19, 19]])
>>> t2i.unindex(t)
['the new words <unk> ideas <eos>', 'the green horse <eos> <pad> <pad>']

PyTorch

>>> import torch
>>> t = torch.LongTensor(t2i.index(["the new words are ideas <eos>", "the green horse <eos> <pad> <pad>"]))
>>> t
tensor([[5, 15, 16, 17, 2, 18],
 [5, 1, 6, 18, 19, 19]])
>>> t2i.unindex(t)
['the new words <unk> ideas <eos>', 'the green horse <eos> <pad> <pad>']

Tensorflow

>>> import tensorflow as tf
>>> t = tf.convert_to_tensor(t2i.index(["the new words are ideas <eos>", "the green horse <eos> <pad> <pad>"]), dtype=tf.int32)
>>> t
tensor([[5, 15, 16, 17, 2, 18],
 [5, 1, 6, 18, 19, 19]])
>>> t2i.unindex(t)
['the new words <unk> ideas <eos>', 'the green horse <eos> <pad> <pad>']

|:inbox_tray:| Installation

Installation can simply be done using pip:

pip3 install token2index

|:mortar_board:| Citing

If you use token2index for research purposes, please cite the library using the following citation info:

@misc{ulmer2020token2index,
 title={token2index: A lightweight but powerful library for token indexing},
 author={Ulmer, Dennis},
 journal={https://github.com/Kaleidophon/token2index},
 year={2020}
}

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 ⚡ 📇 token2index: A lightweight but powerful library for token indexing

_static/up-pressed.png

_static/up.png

